Game Development Reference
In-Depth Information
M. Aghassi and D. Bertsimas. Robust game theory. Mathematical Programming ,
107(1-2):231-273, 2006.
K. R. Apt. Uniform proofs of order independence for various strategy elimination
procedures. The B.E. Journal of Theoretical Economics, 4(1) , 2004. (Contri-
butions), Article 5, 48 pages. Available from
GT/0403024 .
K. R. Apt. Order independence and rationalizability. In Proceedings 10th Conference
on Theoretical Aspects of Reasoning about Knowledge (TARK '05) , pages 22-38.
The ACM Digital Library, 2005. Available from .
K. R. Apt. The many faces of rationalizability. The B.E. Journal of Theoretical
Economics, 7(1) , 2007. (Topics), Article 18, 39 pages. Available from http:
// .
K. R. Apt, F. Rossi, and K. B. Venable. Comparing the notions of optimality in
CP-nets, strategic games and soft constraints. Annals of Mathematics and
Artificial Intelligence , 52(1):25-54, 2008.
I. Ashlagi, D. Monderer, and M. Tennenholtz. Resource selection games with
unknown number of players. In AAMAS '06: Proceedings 5th Int. Joint Conf.
on Autonomous Agents and Multiagent Systems , pages 819-825. ACM Press,
R. Aumann. Interactive epistemology I: Knowledge. International Journal of Game
Theory , 28(3):263-300, 1999.
P. Battigalli and G. Bonanno. Recent results on belief, knowledge and the epistemic
foundations of game theory. Research in Economics , 53(2):149-225, June 1999.
B. D. Bernheim. Rationalizable strategic behavior. Econometrica , 52(4):1007-1028,
J. Bertrand. Theorie mathematique de la richesse sociale. Journal des Savants , 67:
499-508, 1883.
P. Bich. A constructive and elementary proof of Reny's theorem. Cahiers de la MSE
b06001, Maison des Sciences Economiques, Universite Paris Pantheon-Sorbonne,
Jan. 2006. Available from
html .
K. Binmore. Playing for Real: A Text on Game Theory . Oxford University Press,
Oxford, 2007.
K. Binmore. Fun and Games: A Text on Game Theory . D.C. Heath, 1991.
C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference
statements. J. Artif. Intell. Res. (JAIR) , 21:135-191, 2004.
F. Brandt, M. Brill, F. A. Fischer, and P. Harrenstein. On the complexity of iterated
weak dominance in constant-sum games. In Proceedings of the 2nd Symposium
on Algorithmic Game Theory , pages 287-298, 2009.
A. Cournot. Recherches sur les Principes Mathematiques de la Theorie des Richesses .
Hachette, 1838. Republished in English as Researches Into the Mathematical
Principles of the Theory of Wealth .
C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of
computing a Nash equilibrium. Commun. ACM , 52(2):89-97, 2009.
G. Debreu. A social equilibrium existence theorem. Proceedings of the National
Academy of Sciences , 38:886-893, 1952.
Search Nedrilad ::

Custom Search