Game Development Reference
In-Depth Information
A. Kucera and O. Strazovsky. On the controller synthesis for finite-state Markov
decision processes. Fundamenta Informaticae , 82(1-2):141-153, 2008.
T. Liggett and S. Lippman. Stochastic games with perfect information and time
average payoff. SIAM Review , 11(4):604-607, 1969.
W. Ludwig. A subexponential randomized algorithm for the simple stochastic game
problem. Information and Computation , 117(1):151-155, 1995.
A. Maitra and W. Sudderth. Finitely additive stochastic games with Borel measur-
able payoffs. International Journal of Game Theory , 27:257-267, 1998.
D. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic , 63(4):
1565-1581, 1998.
A. McIver and C. Morgan. Games, probability, and the quantitative ╬╝ -calculus. In
Proceedings of LPAR 2002 , volume 2514 of Lecture Notes in Computer Science ,
pages 292-310. Springer, 2002.
J. Nash. Equilibrium points in N -person games. Proceedings of the National Academy
of Sciences , 36:48-49, 1950.
M. Neuhau├čer, M. Stoelinga, and J.-P. Katoen. Delayed nondeterminism in
continuous-time Markov decision processes. In Proceedings of FoSSaCS 2009 ,
volume 5504 of Lecture Notes in Computer Science , pages 364-379. Springer,
2009.
A. Neyman and S. Sorin. Stochastic Games and Applications . Kluwer, Dordrecht,
2003.
J. Norris. Markov Chains . Cambridge University Press, Cambridge, 1998.
A. Pnueli. The temporal logic of programs. In Proceedings of 18th Annual Symposium
on Foundations of Computer Science , pages 46-57. IEEE Computer Society
Press, 1977.
M. Puterman. Markov Decision Processes . Wiley, Hoboken, New Jersey, 1994.
M. Rabe and S. Schewe. Optimal time-abstract schedulers for CTMDPs and Markov
games. In Eighth Workshop on Quantitative Aspects of Programming Languages ,
2010.
S. Ross. Stochastic Processes . Wiley, Hoboken, New Jersey, 1996.
P. Secchi and W. Sudderth. Stay-in-a-set games. International Journal of Game
Theory , 30:479-490, 2001.
L. Shapley. Stochastic games. Proceedings of the National Academy of Sciences , 39:
1095-1100, 1953.
A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics , 5(2):285-309, 1955.
W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science , B:135-192, Elsevier, Amsterdam, 1991.
M. Ummels and D. Wojtczak. Decision problems for Nash equilibria in stochastic
games. In Proceedings of CSL 2009 , volume 5771 of Lecture Notes in Computer
Science , pages 515-529. Springer, 2009.
P. Wolper. Temporal logic can be more expressive. In Proceedings of 22nd An-
nual Symposium on Foundations of Computer Science , pages 340-348. IEEE
Computer Society Press, 1981.
Search Nedrilad ::




Custom Search