Game Development Reference
In-Depth Information
K. Chatterjee, L. de Alfaro, and T. Henzinger. The complexity of stochastic Rabin
and Streett games. In Proceedings of ICALP 2005 , volume 3580 of Lecture
Notes in Computer Science , pages 878-890. Springer, 2005.
K. Chatterjee, T. Henzinger, and M. Jurdzinski. Games with secure equilibria.
Theoretical Computer Science , 365(1-2):67-82, 2006.
K. Chatterjee, L. Doyen, and T. Henzinger. A survey of stochastic games with
limsup and liminf objectives. In Proceedings of ICALP 2009 , volume 5556 of
Lecture Notes in Computer Science , pages 1-15. Springer, 2009.
A. Condon. The complexity of stochastic games. Information and Computation ,96
(2):203-224, 1992.
L. de Alfaro and T. Henzinger. Concurrent omega-regular games. In Proceedings of
LICS 2000 , pages 141-154. IEEE Computer Society Press, 2000.
L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences , 68:374-397, 2004.
E. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science ,
B:995-1072, 1991.
E. Emerson and C. Jutla. The complexity of tree automata and logics of programs.
In Proceedings of FOCS'88 , pages 328-337. IEEE Computer Society Press,
1988.
K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive
stochastic games. In Proceedings of ICALP 2005 , volume 3580 of Lecture Notes
in Computer Science ,pages 891-903. Springer, 2005.
K. Etessami and M. Yannakakis. E cient qualitative analysis of classes of recursive
Markov decision processes and simple stochastic games. In Proceedings of
STACS 2006 , volume 3884 of Lecture Notes in Computer Science , pages 634-
645. Springer, 2006.
K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with
positive rewards. In Proceedings of ICALP 2008, Part I , volume 5125 of Lecture
Notes in Computer Science , pages 711-723. Springer, 2008.
J. Filar and K. Vrieze. Competitive Markov Decision Processes . Springer, Berlin,
1996.
V. Forejt. Controller Synthesis for Markov Decision Processes with Branching-Time
Objectives . PhD thesis, Masaryk University, Faculty of Informatics, 2009.
G. Gillette. Stochastic games with zero stop probabilities. Contributions to the
Theory of Games, vol III , pages 179-187, 1957.
H. Gimbert and F. Horn. Simple stochastic games with few random vertices are
easy to solve. In Proceedings of FoSSaCS 2008 , volume 4962 of Lecture Notes
in Computer Science , pages 5-19. Springer, 2005.
N. Halman. Simple stochastic games, parity games, mean payoff games and dis-
counted payoff games are all LP-type problems. Algorithmica , 49(1):37-50,
2007.
H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing , 6:512-535, 1994.
A. Hoffman and R. Karp. On nonterminating stochastic games. Management
Science , 12:359-370, 1966.
P. Hunter and A. Dawar. Complexity bounds for regular games. In Proceedings of
MFCS 2005 , volume 3618 of Lecture Notes in Computer Science , pages 495-506.
Springer, 2005.
J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains . Springer, 1976.
Search Nedrilad ::




Custom Search