Game Development Reference
In-Depth Information
H. Bjorklund and S. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics ,
155(2):210-229, 2007.
A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved
algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. , 178
(1-2):237-255, 1997.
R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem ,
volume 60 of Classics in Applied Mathematics . Society for Industrial & Applied
Mathematics, 2009.
E. A. Emerson and C. Jutla. Tree automata, μ -calculus and determinacy. In
Foundations of Computer Science (FOCS) , pages 368-377. IEEE Computer
Society Press, 1991.
E. A. Emerson and C.-L. Lei. E cient model checking in fragments of the proposi-
tional mu-calculus (Extended abstract). In Logic in Computer Science (LICS) ,
pages 267-278. IEEE Computer Society Press, 1986.
E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments
of μ -calculus. In Computer-Aided Verification (CAV) , volume 697 of LNCS ,
pages 385-396. Springer, 1993.
J. Fearnley. Non-oblivious strategy improvement. In Logic for Programming,
Artificial Intelligence, and Programming (LPAR) , 2010a. To appear.
J. Fearnley. Exponential lower bounds for policy iteration. In International Collo-
quium on Automata, Languages and Programming (ICALP) , volume 6199 of
LNCS , pages 551-562. Springer, 2010b.
J. Fearnley, M. Jurdzinski, and R. Savani. Linear complementarity algorithms for
infinite games. In Current Trends in Theory and Practice of Computer Science
(SOFSEM) , volume 5901 of Lecture Notes in Computer Science , pages 382-393.
Springer, 2010.
J. Filar and K. Vrieze. Competitive Markov Decision Processes . Springer, Berlin,
O. Friedmann. An exponential lower bound for the parity game strategy improvement
algorithm as we know it. In Logic in Computer Science (LICS) , pages 145-156.
IEEE Computer Society Press, 2009.
O. Friedmann, T. D. Hansen, and U. Zwick. A subexponential lower bound for the
Random Facet algorithm for parity games. Manuscript, April 2010.
B. Gartner and L. Rust. Simple stochastic games and P-matrix generalized linear
complementarity problems. In Fundamentals of Computation Theory (FCT) ,
volume 3623 of Lecture Notes in Computer Science , pages 209-220. Springer,
R. A. Howard. Dynamic Programming and Markov Process . MIT Press, Cambridge,
Massachusetts, 1960.
D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
J. Comput. Syst. Sci. , 37(1):79-100, 1988.
M. Jurdzinski. Small progress measures for solving parity games. In Symposium
on Theoretical Aspects of Computer Science (STACS) , volume 1770 of Lecture
Notes in Computer Science , pages 358-369. Springer, 2000.
M. Jurdzinski. Deciding the winner in parity games is in UP
co-UP. Inf. Process.
Lett. , 63(3):119-124, 1998.
Search Nedrilad ::

Custom Search