Game Development Reference
In-Depth Information
If you were writing a game for the Wii or some other platform that can capture a player's
motion, then you can relate the player's swing motion to the initial torque applied to a
virtual golf club, thus determining, through some model, the swing dynamics and re‐
Golfers take swing technique seriously and so do scientists who study golf swing dy‐
namics. In an effort to understand what makes a good swing or how to improve a swing,
there are many scientists out there actively studying the golf swing physics. As a result,
there are many mathematical models of varying degrees of realism and complexity that
aim to examine the golf swing. One example is the so-called two-rod model as described
in Theodore P. Jorgensen's book The Physics of Golf . In his book, Dr. Jorgensen describes
the two-rod model in detail, including assumptions and simplifications, and provides
the resulting equations that must be solved to simulate a golf swing based on this model.
He even provides empirical data used to validate the results of the mathematical model.
As shown in Figure 19-1 , the two-rod model assumes that the golfer's arm is one rod
that extends from the shoulders to the wrists. This is the arm rod . The club is represented
by another rod that extends from the wrist end of the arm rod to the club head.
Figure 19-1. Two-rod model of golf swing
This model is essentially a double pendulum. More specifically, it is a driven double
pendulum since the model assumes a torque applied at the shoulder end of the arm rod,
and another torque applied at the wrist joint connecting the arm rod to the club rod.